Projects and Associated Publications

Data-Driven Abstractions via Binary-Tree Gaussian Processes for Formal Verification

Oliver Schön, Shammakh Naseer, Ben Wooding, Sadegh Soudjani

8th IFAC Conference on Analysis and Design of Hybrid Systems (ADHS 2024).

 

Formal verification of stochastic systems using Binary-Tree Gaussian Processes (BTGPs) for efficient abstraction. BTGPs naturally partition the state space, simplifying error quantification. This yields formal models that are amenable to model checking.

SySCoRe: Synthesis via Stochastic Coupling Relations

Oliver Schön, Birgit van Huijgevoort, Sofie Haesaert, Sadegh Soudjani

IEEE 61st Conference on Decision and Control (CDC 2022).

Establishing formal guarantees while allowing for epistemic uncertainty is still a great challenge. We investigate ways of relating parametric stochastic systems to their nominal model.

Full Text

Video Available

With Alessandro Abate, Henk Blom, Joanna Delicaris, Arnd Hartmanns, Abolfazl Lavaei, Hao Ma, Mathis Niehage, Anne Remke, Stefan Schupp, Lisa Willemsen. 9th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22).

 

A friendly competition for formal verification and policy synthesis of stochastic models showcasing the performance and limits of state-of-the-art solution approaches.

Full Text

26th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2023).

Developed MATLAB toolbox for synthesizing robust controllers for stochastic continuous-state systems to satisfy temporal logic specifications and quantifying the associated formal robustness guarantees.

Try SySCoRe online

Full Text

This paper addresses the problem of data-driven computation of controllers that are correct by design for safety-critical systems and can provably satisfy (complex) functional requirements. With a focus on continuous-space stochastic systems with parametric uncertainty, we propose a two-stage approach that decomposes the problem into a learning stage and a robust formal controller synthesis stage. The first stage utilizes available Bayesian regression results to compute robust credible sets for the true parameters of the system. For the second stage, we introduce methods for systems subject to both stochastic and parametric uncertainties. We provide simulation relations for enabling correct-by-design control refinement that are founded on coupling uncertainties of stochastic systems via sub-probability measures. The presented relations are essential for constructing abstract models that are related to not only one model but to a set of parameterized models. The results are demonstrated on three case studies, including a nonlinear and a high-dimensional system.

Preprint available

26th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2023).

In this ongoing work, we address data-driven computation of controllers that are correct by design for safety-critical systems and can provably satisfy complex functional requirements. We propose a two-stage approach that decomposes the problem into a data-driven stage and a robust formal controller synthesis stage. The first stage utilizes available Bayesian linear regression methods to compute robust confidence sets for the true parameters of the system. The second stage develops methods for systems subject to both stochastic and parametric uncertainties. We provide simulation relations for enabling control refinement that are founded on coupling uncertainties of stochastic systems via sub-probability measures. Such relations are essential for constructing abstract models that are related to not only one model but to a set of parametric models.

Poster

IEEE 62st Conference on Decision and Control (CDC 2023).


We address two limitations of existing approaches for formal synthesis of controllers for networks of stochastic systems satisfying complex temporal specifications. Firstly, whilst existing approaches rely on the stochasticity to be Gaussian, the heterogeneous nature of composed systems typically yields a more complex stochastic behavior. Secondly, exact models of the systems involved are generally not available or difficult to acquire. We design controllers based on parameter uncertainty sets identified from observed data and approximate possibly arbitrary noise distributions using Gaussian mixture models whilst quantifying the incurred stochastic coupling.

Full Text

Alessandro Abate, Henk Blom, Nathalie Cauchi, Joanna Delicaris, Sofie Haesaert, Birgit van Huijgevoort, Abolfazl Lavaei, Anne Remke, Oliver Schön, Stefan Schupp, Fedor Shmarov, Sadegh Soudjani, Lisa Willemsen and Paolo Zuliani

Full Text

Open challenges are extension to LTL specifications and scalability.

Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying Non-Autonomous Dynamical Systems

Oliver Schön, Ricarda Samantha-Götte, Julia Timmermann

14th IFAC Workshop on Adaptive and Learning Control Systems (ALCOS 2022).

 

Learning dynamics models from data whilst utilizing physics-based knowledge for efficient convergence and physically plausible models. Combining a multi-objective approach, an approximate dynamics model, and a recurrent neural network.

Theses

Since their introduction, Physics-guided Neural Networks (PGNN), a novel class of hybrid models, have already been successfully implemented in several domains of application. As a result, both synergetic effects as well as physically sound models were obtained. Within the context of this thesis, for the first time, the potential of PGNNs for the identification of dynamic systems is investigated from a control engineering point of view. Various approaches are identified and first investigations are performed. By combining a recurrent neural network with a physical dynamics model, a Physics-guided Recurrent Neural Network (PGRNN) is constructed. It is demonstrated that the PGRNN generally outperforms a purely data-driven approach by a substantial margin. Further investigations indicate that the quality of the introduced dynamics model is merely of minor importance to the resulting performance benefits. Consecutively, the PGRNN is augmented by a physics-based constraint, inciting energy conserving solutions as well as a function library of nonlinear terms. The latter resulted in the full compensation of prediction error deficiencies due to inaccurate dynamic models.

 

Full Text (in German)

All Publications on Google Scholar

Article Authors Year Citations
Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean EmbeddingsO Schön, Z Zhong, S Soudjani20242
Lyapunov-Based Policy Synthesis for Multi-Objective Interval MDPsN Monir, O Schön, S Soudjani2024
Data-Driven Abstractions via Binary-Tree Gaussian Processes for Formal VerificationO Schön, S Naseer, B Wooding, S Soudjani2024
Verifying the unknown: Correct-by-design control synthesis for networks of stochastic uncertain systemsO Schön, B van Huijgevoort, S Haesaert, S Soudjani20232
ARCH-COMP23 Category report: stochastic modelsA Abate, H Blom, N Cauchi, J Delicaris, S Haesaert, B van Huijgevoort, ...20233
Data-Driven Correct-by-Design Control of Parametric Stochastic Systems✱O Schön, B Van Huijgevoort, S Haesaert, S Soudjani2023
SySCoRe: Synthesis via stochastic coupling relationsB Van Huijgevoort, O Schön, S Soudjani, S Haesaert202312
Bayesian formal synthesis of unknown systems via robust simulation relationsO Schön, B van Huijgevoort, S Haesaert, S Soudjani20234
Correct-by-Design Control of Parametric Stochastic SystemsO Schön, B van Huijgevoort, S Haesaert, S Soudjani20228
ARCHCOMP22 Category ReportA Abate, H Blom, J Delicaris, S Haesaert, A Hartmanns, ...20225
ARCH-COMP22 Stochastic ModelsA Abate, H Blom, J Delicaris, S Haesaert, A Hartmanns, ...20228
Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying Non-Autonomous Dynamical SystemsO Schön, RS Götte, J Timmermann20226

Meet My Collaborators

http://oliverschon.com/wp-content/uploads/2022/12/021222-NUHeadshots-40-scaled-e1672141173377.jpg

Dr. Sadegh Soudjani

Max Planck Institute SWS, Germany

Dr. Sofie Haesaert

TU Eindhoven, The Netherlands

Dr. Birgit van Huijgevoort

TU Eindhoven, The Netherlands

Zhengang Zhong

Imperial College, United Kingdom